Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
Biomark Res ; 12(1): 21, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38321558

RESUMO

Transcription factor BTB domain and CNC homology 1 (BACH1) belongs to the Cap 'n' Collar and basic region Leucine Zipper (CNC-bZIP) family. BACH1 is widely expressed in mammalian tissues, where it regulates epigenetic modifications, heme homeostasis, and oxidative stress. Additionally, it is involved in immune system development. More importantly, BACH1 is highly expressed in and plays a key role in numerous malignant tumors, affecting cellular metabolism, tumor invasion and metastasis, proliferation, different cell death pathways, drug resistance, and the tumor microenvironment. However, few articles systematically summarized the roles of BACH1 in cancer. This review aims to highlight the research status of BACH1 in malignant tumor behaviors, and summarize its role in immune regulation in cancer. Moreover, this review focuses on the potential of BACH1 as a novel therapeutic target and prognostic biomarker. Notably, the mechanisms underlying the roles of BACH1 in ferroptosis, oxidative stress and tumor microenvironment remain to be explored. BACH1 has a dual impact on cancer, which affects the accuracy and efficiency of targeted drug delivery. Finally, the promising directions of future BACH1 research are prospected. A systematical and clear understanding of BACH1 would undoubtedly take us one step closer to facilitating its translation from basic research into the clinic.

2.
J Hepatocell Carcinoma ; 11: 241-255, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38333220

RESUMO

Background: Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death worldwide. Accumulating evidence indicates that hypoxia and lactate metabolism play critical roles in tumor progression and therapeutic efficacy. This study aimed to construct a hypoxia- and lactate metabolism-related prognostic model (HLPM) to evaluate survival and treatment responses for HCC patients and develop a nomogram integrated with HLPM and clinical characteristics for prognosis prediction in HCC. Methods: Expression profile and clinical data of HCC were obtained from TCGA and ICGC databases. The univariate, LASSO and stepwise multivariate Cox analyses were used to identify the hypoxia- and lactate metabolism-related biomarkers, whose expression levels were then validated in 14 pairs tissue samples and single-cell RNA sequencing dataset. Kaplan-Meier survival curves were utilized to assess the prognostic values of biomarkers or models. Analyses of ImmuCellAI, TIDE and drug sensitivity were conducted to evaluate the therapeutic responses of patients. Furthermore, the nomogram integrated with hypoxic and lactate metabolic characteristics was established through univariate and multivariate Cox analyses. ROC curves, C-index, and calibration curves were depicted to evaluate the performance of the nomogram. Results: Five hypoxia- and lactate metabolism-related biomarkers (KIF20A, IRAK1, ADM, PPARGC1A and EPO) were used to construct HLPM. The expression of five prognostic biomarkers was validated in 14 pairs tissue samples and single-cell RNA sequencing dataset. Analyses of ImmuCellAI, TIDE and drug sensitivity implied that patients with low-risk score were more sensitive to immunotherapy and major chemotherapeutic agents. The nomogram that contained age, histological grade and risk score of HLPM was developed and exhibited a better capacity in prognosis prediction than HLPM only. Conclusion: A novel nomogram integrated with hypoxic and lactate metabolic characteristics was developed and validated for prognosis prediction in HCC, providing insight into personalized decision-making in clinical management.

3.
Cell Death Discov ; 10(1): 67, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38331879

RESUMO

The sex-determining region Y (SRY)-related high-mobility group (HMG) box (SOX) family, composed of 20 transcription factors, is a conserved family with a highly homologous HMG domain. Due to their crucial role in determining cell fate, the dysregulation of SOX family members is closely associated with tumorigenesis, including tumor invasion, metastasis, proliferation, apoptosis, epithelial-mesenchymal transition, stemness and drug resistance. Despite considerable research to investigate the mechanisms and functions of the SOX family, confusion remains regarding aspects such as the role of the SOX family in tumor immune microenvironment (TIME) and contradictory impacts the SOX family exerts on tumors. This review summarizes the physiological function of the SOX family and their multiple roles in tumors, with a focus on the relationship between the SOX family and TIME, aiming to propose their potential role in cancer and promising methods for treatment.

4.
Int J Surg ; 110(1): 406-418, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37800536

RESUMO

Research on liver transplantation (LT) for liver cancer has gained increasing attention. This paper has comprehensively described the current status, hotspots and trends in this field. A total of 2991 relevant articles from 1 January 1963 to 28 February 2023 were obtained from the Web of Science Core Collection. VOSviewer and CiteSpace software were utilized as bibliometric tools to analyze and visualize knowledge mapping. Between 1963 and 2023, the number of papers in the area of LT for liver cancer increased continuously. A total of 70 countries/regions, 2303 institutions and 14 840 researchers have published research articles, with the United States and China being the two most productive countries. Our bibliometric-based visual analysis revealed the expansion of LT indications for liver cancer and the prevention/treatment of cancer recurrence as ongoing research hotspots over the past decades. Meanwhile, emerging studies also focus on downstaging/bridging treatments before LT and the long-term survival of LT recipient, in particular the precise application of immunosuppressants.


Assuntos
Neoplasias Hepáticas , Transplante de Fígado , Humanos , Neoplasias Hepáticas/cirurgia , Bibliometria , China , Imunossupressores
5.
Water Res ; 249: 120949, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38070348

RESUMO

The start-up and stable operation of partial nitritation-anammox (PN/A) treatment of mature landfill leachate (MLL) still face challenges. This study developed an innovative staged pilot-scale PN/A system to enhance nitrogen removal from MLL. The staged process included a PN unit, an anammox upflow enhanced internal circulation biofilm (UEICB) reactor, and a post-biofilm unit. Rapid start-up of the continuous flow PN process (full-concentration MLL) was achieved within 35 days by controlling dissolved oxygen and leveraging free ammonia and free nitrous acid to selectively suppress nitrite-oxidizing bacteria (NOB). The UEICB was equipped with an annular flow agitator combined with the enhanced internal circulation device of the guide tube, which achieved an efficient enrichment of Candidatus Kuenenia in the biofilm (relative abundance of 33.4 %). The nitrogen removal alliance formed by the salt-tolerant anammox bacterium (Candidatus Kuenenia) and denitrifying bacteria (unclassified SBR1031 and Denitratisoma) achieved efficient nitrogen removal of UEICB (total nitrogen removal percentage: 90.8 %) and at the same time effective treatment of the refractory organic matter (ROM). The dual membrane process of UEICB fixed biofilm combined with post-biofilm is effective in sludge retention, and can stably control the effluent suspended solids (SS) at a level of less than 5 mg/L. The post-biofilm unit ensured that effluent total nitrogen (TN) remained below the 40 mg/L discharge standard (98.5 % removal efficiency). Compared with conventional nitrification-denitrification systems, the staged PN/A process substantially reduced oxygen consumption, sludge production, CO2 emissions and carbon consumption by 22.8 %, 67.1 %, 87.1 % and 87.1 %, respectively. The 195-day stable operation marks the effective implementation of the innovative pilot-scale PN/A process in treating actual MLL. This study provides insights into strategies for rapid start-up, robust NOB suppression, and anammox biomass retention to advance the application of PN/A in high-ammonia low-carbon wastewater.


Assuntos
Desnitrificação , Poluentes Químicos da Água , Amônia , Nitritos , Nitrogênio , Esgotos , Biomassa , Oxidação Anaeróbia da Amônia , Reatores Biológicos/microbiologia , Oxirredução , Nitrificação , Bactérias , Carbono
6.
Cancer Sci ; 115(2): 427-438, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38115228

RESUMO

Gastric cancer is one of the most common causes of cancer-related death worldwide. The N6 -methyladenosine (m6 A) reader IGF2BP1 (insulin-like growth factor-2 mRNA binding protein 1) has been reported to promote cancer progression by stabilizing oncogenic mRNAs through its m6 A-binding activity in some tumors. However, the role of IGF2BP1 in gastric carcinogenesis remains unclear. In this study, we found that IGF2BP1 is significantly downregulated in tumor tissues from patients with gastric cancer. Lower expression of IGF2BP1 is associated with poor prognosis. Gastric cancer cell proliferation is suppressed by IGF2BP1 in an m6 A-dependent manner. Additionally, IGF2BP1 is able to significantly attenuate tumor growth of gastric cancer cells. Further m6 A sequencing and m6 A-RNA immunoprecipitation assays show that MYC (c-myc proto-oncogene) mRNA is a target transcript of IGF2BP1 in gastric cancer cells. IGF2BP1 inhibits gastric cancer cell proliferation by reducing the mRNA and protein expression of MYC. Mechanistically, IGF2BP1 promotes the degradation of MYC mRNA and inhibits its translation efficiency. Taken together, these data suggest that IGF2BP1 plays a tumor-suppressive role in gastric carcinogenesis by downregulating MYC in an m6 A-dependent manner, thereby making the IGF2BP1-MYC axis a potential target for gastric cancer treatment.


Assuntos
Neoplasias Gástricas , Humanos , Carcinogênese/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Neoplasias Gástricas/genética
7.
Int Immunopharmacol ; 127: 111376, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38113691

RESUMO

BACKGROUND AND AIMS: RNA splicing is an essential step in regulating the gene posttranscriptional expression. Serine/arginine-rich splicing factors (SRSFs) are splicing regulators with vital roles in various tumors. Nevertheless, the expression patterns and functions of SRSFs in hepatocellular carcinoma (HCC) are not fully understood. METHODS: Flow cytometry and immunofluorescent staining were used to determine the CD8+T cell infiltration. Orthotopic HCC model, lung metastasis model, DEN/CCl4 model, Srsf10△hep model, and Srsf10HepOE model were established to evaluate the role of SRSF10 in HCC and the efficacy of combination treatment. RESULTS: SRSF10 was one of the most survival-relevant genes among SRSF members and was an independent prognostic factor for HCC. SRSF10 facilitated HCC growth and metastasis by suppressing CD8+T cell infiltration. Mechanistically, SRSF10 down-regulated the p53 protein by preventing the exon 6 skipping (exon 7 in mouse) mediated degradation of MDM4 transcript, thus inhibiting CD8+T cell infiltration. Elimination of CD8+T cells or overexpression of MDM4 removed the inhibitory role of SRSF10 knockdown in HCC growth and metastasis. SRSF10 also inhibited the IFNα/γ signaling pathway and promoted the HIF1α-mediated up-regulation of PD-L1 in HCC. Hepatocyte-specific SRSF10 deficiency alleviated the DEN/CCl4-induced HCC progression and metastasis, whereas hepatocyte-specific SRSF10 overexpression deteriorated these effects. Finally, SRSF10 knockdown enhanced the anti-PD-L1-mediated anti-tumor activity. CONCLUSIONS: SRSF10 promoted HCC growth and metastasis by repressing CD8+T cell infiltration mediated by the MDM4-p53 axis. Furthermore, SRSF10 suppressed the IFNα/γ signaling pathway and induced the HIF1α signal mediated PD-L1 up-regulation. Targeting SRSF10 combined with anti-PD-L1 therapy showed promising efficacy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Camundongos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Antígeno B7-H1/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Fatores de Processamento de Serina-Arginina/genética , Fatores de Processamento de Serina-Arginina/metabolismo , Proteínas Repressoras/metabolismo , Proteínas de Ciclo Celular/metabolismo
8.
MedComm (2020) ; 4(6): e439, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38045832

RESUMO

Ubiquitin-specific protease 22 (USP22) has been identified as a potential marker for cancer stem cells in hepatocellular carcinoma (HCC). It can promote HCC stemness, which is considered a driver of tumorigenesis. Here, we sought to determine the role of USP22 in tumorigenesis, elucidate its underlying mechanism, and explore its therapeutic significance in HCC. As a result, we found that tissue-specific Usp22 overexpression accelerated tumorigenesis, whereas Usp22 ablation decelerated it in a c-Myc/NRasGV12-induced HCC mouse model and that the mammalian target of rapamycin complex 1 (mTORC1) pathway was activated downstream. USP22 overexpression resulted in increased tumorigenic properties that were reversed by rapamycin in vitro and in vivo. In addition, USP22 activated mTORC1 by deubiquitinating FK506-binding protein 12 (FKBP12) and activated mTORC1, in turn, further stabilizing USP22 by inhibiting autophagic degradation. Clinically, HCC patients with high USP22 expression tend to benefit from mTOR inhibitors after liver transplantation (LT). Our results revealed that USP22 promoted tumorigenesis and progression via an FKBP12/mTORC1/autophagy positive feedback loop in HCC. Clinically, USP22 may be an effective biomarker for selecting eligible recipients with HCC for anti-mTOR-based therapy after LT.

9.
Front Bioeng Biotechnol ; 11: 1247711, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38094897

RESUMO

Urban wastewater, as the main influent type of Waste Water Treatment Plants (WWTPs), has the characteristic of low carbon to nitrogen ratio (C/N). In the biological nitrogen removal (BNR) process, insufficient carbon source often affects the nitrogen removal efficiency and leads to more N2O emissions. We review recent researches on N2O emissions in the BNR process of wastewater with low C/N. The availability of carbon sources affects heterotrophic denitrification (HD) and autotrophic nitrification/denitrification processes, which are the main reasons for N2O emissions in BNR. For the sustainable development of BNR in WWTPs, we introduce strategies suitable for reducing N2O emissions in the BNR process of low C/N wastewater from two aspects: traditional process innovation and new process development. These strategies mainly include carbon source addition, adjustment of aeration strategy, optimization of oxidation ditch and biofilm facilities, and application of Anammox related processes. In the future, it is still necessary to further deepen this research direction through the normalization of N2O emission quantification standards, exploration of N2O metabolism mechanisms, assessment of environmental effects of emission reduction strategies, and practical application of new processes.

10.
Cell Death Dis ; 14(12): 810, 2023 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-38065978

RESUMO

Ferroptosis, which is driven by iron-dependent lipid peroxidation, plays an essential role in liver ischemia-reperfusion injury (IRI) during liver transplantation (LT). Gp78, an E3 ligase, has been implicated in lipid metabolism and inflammation. However, its role in liver IRI and ferroptosis remains unknown. Here, hepatocyte-specific gp78 knockout (HKO) or overexpressed (OE) mice were generated to examine the effect of gp78 on liver IRI, and a multi-omics approach (transcriptomics, proteomics, and metabolomics) was performed to explore the potential mechanism. Gp78 expression decreased after reperfusion in LT patients and mice with IRI, and gp78 expression was positively correlated with liver damage. Gp78 absence from hepatocytes alleviated liver damage in mice with IRI, ameliorating inflammation. However, mice with hepatic gp78 overexpression showed the opposite phenotype. Mechanistically, gp78 overexpression disturbed lipid homeostasis, remodeling polyunsaturated fatty acid (PUFA) metabolism, causing oxidized lipids accumulation and ferroptosis, partly by promoting ACSL4 expression. Chemical inhibition of ferroptosis or ACSL4 abrogated the effects of gp78 on ferroptosis and liver IRI. Our findings reveal a role of gp78 in liver IRI pathogenesis and uncover a mechanism by which gp78 promotes hepatocyte ferroptosis by ACSL4, suggesting the gp78-ACSL4 axis as a feasible target for the treatment of IRI-associated liver damage.


Assuntos
Ferroptose , Hepatócitos , Hepatopatias , Receptores do Fator Autócrino de Motilidade , Traumatismo por Reperfusão , Animais , Humanos , Camundongos , Hepatócitos/enzimologia , Inflamação/metabolismo , Hepatopatias/metabolismo , Traumatismo por Reperfusão/metabolismo , Transplante de Fígado , Receptores do Fator Autócrino de Motilidade/genética , Receptores do Fator Autócrino de Motilidade/metabolismo , Coenzima A Ligases
11.
J Immunother Cancer ; 11(11)2023 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-38030304

RESUMO

BACKGROUND: Immunotherapy has facilitated great breakthroughs in the treatment of hepatocellular carcinoma (HCC). However, the efficacy and response rate of immunotherapy are limited and vary among different patients with HCC. TP53 mutation substantially affects the expression of immune checkpoint molecules in multiple cancers. However, the regulatory relationship between programmed death ligand 1 (PD-L1) and TP53 is poorly studied in HCC. We aimed to elucidate the regulatory mechanism of PD-L1 in HCC with different TP53 statuses and to assess its role in modulating immune evasion in HCC. METHODS: HCC mouse models and cell lines with different TP53 statuses were constructed. PD-L1 levels were detected by PCR, western blotting and flow cytometry. RNA-seqencing, immunoprecipitation, chromatin immunoprecipitation and transmission electron microscopy were used to elucidate the regulatory mechanism in HCC with different TP53 status. HCC mouse models and patient with HCC samples were analyzed to demonstrate the preclinical and clinical significance of the findings. RESULTS: We report that loss of p53 promoted PD-L1 expression and reduced CD8+ T-cell infiltration in patient with HCC samples and mouse models. Mammalian target of rapamycin (mTOR) pathway was activated in p53-loss-of-function HCC or after knocking down TP53. The transcription factor E2F1 was found to bind to the p53 protein in TP53 wild-type HCC cells, and inhibiting mammalian target of rapamycin complex 1 (mTORC1) disrupted this binding and enhanced E2F1 translocation to the nucleus, where it bound to the PD-L1 promoter and transcriptionally upregulated PD-L1. In p53-loss-of-function HCC cells, autophagosomes were activated after mTORC1 suppression, promoting the degradation of PD-L1 protein. The combination of mTOR inhibitor and anti-PD-L1 antibody enhanced CD8+ T-cell infiltration and tumor suppression in TP53 wild-type HCC mouse models, but no benefit was observed in p53-loss-of-function HCC mouse models. In patients with TP53 wild-type HCC, PD-L1 levels were significantly higher in the high E2F1 group than in the low E2F1 group, and the low E2F1 level group had significantly superior survival. CONCLUSION: We revealed the bidirectional regulatory mechanism of PD-L1 mediated by TP53/mTORC1 in HCC. The combination of mTOR inhibitor and anti-PD-L1 antibody could be a novel precise immunotherapy scheme for TP53 wild-type HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Animais , Camundongos , Carcinoma Hepatocelular/patologia , Antígeno B7-H1/metabolismo , Neoplasias Hepáticas/patologia , Proteína Supressora de Tumor p53/genética , Evasão da Resposta Imune , Serina-Treonina Quinases TOR/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Mamíferos/metabolismo
12.
J Transl Med ; 21(1): 739, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37858181

RESUMO

BACKGROUND: Hepatic ischemia-reperfusion (IR) injury is the primary reason for complications following hepatectomy and liver transplantation (LT). Insulin-induced gene 2 (Insig2) is one of several proteins that anchor the reticulum in the cytoplasm and is essential for metabolism and inflammatory responses. However, its function in IR injury remains ambiguous. METHODS: Insig2 global knock-out (KO) mice and mice with adeno-associated-virus8 (AAV8)-delivered Insig2 hepatocyte-specific overexpression were subjected to a 70% hepatic IR model. Liver injury was assessed by monitoring hepatic histology, inflammatory responses, and apoptosis. Hypoxia/reoxygenation stimulation (H/R) of primary hepatocytes and hypoxia model induced by cobalt chloride (CoCl2) were used for in vitro experiments. Multi-omics analysis of transcriptomics, proteomics, and metabolomics was used to investigate the molecular mechanisms underlying Insig2. RESULTS: Hepatic Insig2 expression was significantly reduced in clinical samples undergoing LT and the mouse IR model. Our findings showed that Insig2 depletion significantly aggravated IR-induced hepatic inflammation, cell death and injury, whereas Insig2 overexpression caused the opposite phenotypes. The results of in vitro H/R experiments were consistent with those in vivo. Mechanistically, multi-omics analysis revealed that Insig2 is associated with increased antioxidant pentose phosphate pathway (PPP) activity. The inhibition of glucose-6-phosphate-dehydrogenase (G6PD), a rate-limiting enzyme of PPP, rescued the protective effect of Insig2 overexpression, exacerbating liver injury. Finally, our findings indicated that mouse IR injury could be attenuated by developing a nanoparticle delivery system that enables liver-targeted delivery of substrate of PPP (glucose 6-phosphate). CONCLUSIONS: Insig2 has a protective function in liver IR by upregulating the PPP activity and remodeling glucose metabolism. The supplementary glucose 6-phosphate (G6P) salt may serve as a viable therapeutic target for alleviating hepatic IR.


Assuntos
Hepatócitos , Insulinas , Hepatopatias , Traumatismo por Reperfusão , Animais , Camundongos , Antioxidantes/metabolismo , Apoptose/genética , Glucose/metabolismo , Hepatectomia/efeitos adversos , Hepatócitos/metabolismo , Hepatócitos/patologia , Hipóxia/complicações , Hipóxia/genética , Hipóxia/metabolismo , Insulinas/metabolismo , Fígado/irrigação sanguínea , Fígado/lesões , Fígado/metabolismo , Fígado/patologia , Hepatopatias/genética , Hepatopatias/metabolismo , Hepatopatias/patologia , Hepatopatias/cirurgia , Transplante de Fígado/efeitos adversos , Fosfatos/metabolismo , Fosfatos/farmacologia , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/prevenção & controle
13.
Environ Res ; 239(Pt 1): 117245, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37774999

RESUMO

The squeezed liquid from fruit and vegetable waste (LW) presents a unique wastewater challenge, marked by recalcitrance in treatment and amplified design risks with the application of conventional processes. Following coagulation of the squeezed liquid, the majority of particulate matter precipitates. The resulting precipitated floc (LWF) is reclaimed and subsequently utilized for the synthesis of biochar. The present study primarily explores the viability of repurposing LWF as biochar to enhance soil quality and mitigate N2O emissions. Findings indicate that the introduction of a 2% proportion of LWFB led to a remarkable 99.5% reduction in total N2O emissions in contrast to LWF. Concurrently, LWFB substantially enhanced nutrients content by elevating soil organic carbon (SOC) and nitrogen levels. Utilizing high-throughput sequencing in conjunction with qPCR, the investigation unveiled that the porous structure and substantial specific surface area of LWFB potentially fostered microbial adhesion and heightened diversity within the soil microbial community. Furthermore, LWFB notably diminished the relative abundance of AOB (Nitrosospira, Nitrosomonas), and NOB (Candidatus_Nitrotoga), thereby curbing the conversion of NH4+ into NO3-. The pronounced elevation in nosZ abundance implies that LWFB holds the potential to mitigate N2O emissions through a conversion to N2.


Assuntos
Microbiota , Solo , Solo/química , Carbono , Verduras , Frutas/química , Óxido Nitroso , Microbiologia do Solo
14.
Environ Sci Pollut Res Int ; 30(44): 99454-99472, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37610547

RESUMO

The water quality status, spatial and temporal change processes, and water environment improvement process of urban rivers are valuable lessons to be learned under the sustainable development strategy. This study aims to reveal the water environment improvement process of intensively developed urban rivers, elucidate the spatial and temporal distribution characteristics of major pollutants, and provide recommendations for their water environment management. Water quality data from eight monitoring sites (2007-2020) in the Longgang River basin in Shenzhen, China, and comprehensive pollution index method (CPI), modified comprehensive pollution index method (M-CPI), and Pearson correlation analysis method were used for comprehensive analysis. The study shows that TN, TP, NH3-N, and COD have the greatest influence on the water quality of Longgang River, with the average pollution contribution of 53.39%, 14.49%, 11.66%, and 4.92%, in order. In 2015-2020, the water quality of the main stream of the Longgang River in the wet season was worse than that in the dry season, while the water quality of the tributaries Dingshan River and the Huangsha River in the dry season was worse than the wet season. The spatial distribution characteristics based on M-CPI indicate that the water quality of the lower reaches of Longgang River, the tributaries Dingshan River and Huangsha River, is relatively poor. In addition, the water environment improvement process of Longgang River can be divided into 3 stages: engineering stage (2007-2013, rating changed from heavily polluted to basically qualified), bottleneck stage (2013-2017, rating fluctuated slightly above and below basically qualified), and ecological restoration stage (2017-2020, rating reached qualified in 2019).


Assuntos
Poluentes Químicos da Água , Qualidade da Água , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Rios , China
15.
ACS Omega ; 8(21): 19072-19080, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37273640

RESUMO

In the present study, a practical method for synthesizing the key intermediate 5,7-dichlorotetrahydroisoquinoline-6-carboxylic acid (1) of Lifitegrast was proposed. First, an investigation was conducted into the utilization of the impurity and recrystallization method in the synthesis of 5,7-dichlorotetrahydroisoquinoline (5·HCl) via Friedel-Crafts cyclization. Through the screening of different protection groups, a previously unreported quaternary ammonium salt (13) was isolated with a 95.9% yield and 99.6% purity by simply adjusting the pH during the carboxylation reaction. Subsequently, free state 1 was obtained by controlling the pH to 4-5 with HCl(aq), thereby avoiding the need for a free operation in the synthesis of the API of Lifitegrast. Further, the triphenylmethanol (TrOH) was recycled to triphenylmethyl chloride (TrCl) using CaCl2/HCl(aq) with 93.0% yield and 98.0% purity.

16.
Sci Total Environ ; 894: 164784, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37302613

RESUMO

The impacts of sulfide on biological nitrogen removal have been investigated repeatedly, but the impacts in terms of the removal technologies have not been systematically organized and discussed yet. This review recapped the dual character of sulfide in novel biological nitrogen removal and proposed the coupling mechanisms of nitrogen removal and sulfide interaction. The dual character of sulfide was basically divided into the advantage as electron donors and the disadvantage as cytotoxic agent to wide bacteria. The positive character of sulfide has been utilized for improving the performances of denitrification and anaerobic ammonium oxidation in laboratory and polit scales. Intriguingly, the sulfide cytotoxicity was feasibly turned into the profit which was to trigger the partial nitrification by selectively inhibiting ammonia oxidizing bacteria and nitrite oxidizing bacteria. Thus, this productive conversion dramatically promoted the importance of sulfide in sewage treatment. In order to maximize the favorable aspect of sulfide utilization, it was crucial to manage the sulfide concentration for fear of the side reactions with untargeted substances. Furthermore, S/N ratio in sewage may be the keystone that decides if sulfide benefits biological nitrogen removal. In sum, our work can facilitate the dialectical development of effective strategies for sulfide utilization in biological nitrogen removal.


Assuntos
Desnitrificação , Esgotos , Esgotos/microbiologia , Nitrogênio , Elétrons , Reatores Biológicos/microbiologia , Nitrificação , Bactérias , Sulfetos , Oxirredução
17.
Water Res ; 238: 119993, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37146395

RESUMO

Free nitrous acid (FNA) has been widely employed for improvement of wastewater management by altering sludge characteristic and function based on its polymer lysing and biocidal capacity. Sludge characteristic and function are commonly considered as the joint consequence of microbial individual behaviors and quorum sensing (QS) involved collective behaviours, but the role of the latter in FNA treatment was still as-yet-unidentified and addressed in this research. The results of sludge morphology and component characterized FNA-induced zoogloea deformation, including inner cell exposure, half of extracellular polymeric substances (EPS) reduction and adsorption site depletion. During zoogloea deformation, four acyl-homoserine lactones (AHLs), including C4-HSL, C8-HSL, C10-HSL and C12-HSL, transferred inward of microbiota, and their total contents reduced by 66% because of depressed signal production, augmented decomposer and recognition. Transcriptome analysis revealed that differentially expressed QS driven by AHL redistribution facilitated microbiota acclimatization including cellular motility and hydrolase synthesis for EPS consumption. Boosted motility may favor escaping from stress spot and moderating intercellular acidity based on cell motility test. Feasible EPS consumption provided nutrition for heterotrophic metabolisms testified by pure culture with EPS as sole nutrition. Our work thus comprehensively revealed QS behaviours responding to FNA and deepened the understanding to FNA treatment performance in wastewater management.


Assuntos
Microbiota , Zoogloea , Percepção de Quorum , Esgotos , Águas Residuárias , Ácido Nitroso , Zoogloea/metabolismo , Acil-Butirolactonas/análise , Acil-Butirolactonas/metabolismo
18.
Chin J Cancer Res ; 35(2): 92-107, 2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-37180832

RESUMO

Liver transplantation (LT) is a highly curative therapy for patients with hepatocellular carcinoma (HCC). However, due to the shortage of donor livers and rapid progression of HCC, a majority of patients are dropped out from the waitlist. Recently, immunotherapy has shown great promise in the treatment of advanced HCC. However, the use of immunotherapy is limited in LT mainly due to the potentially increasing risk of graft rejection. One of the main challenges for researchers is the protection of donor graft from an immunotherapy-boosted immune response mounted by the host. Besides, the safety, availability, and costs of immunotherapy are other challenges that need to be addressed. Here, we reviewed the literature involving patients who received immunotherapy prior to transplant to avoid waitlist dropouts and following transplantation to prevent the progression of tumor recurrence and metastasis. Statistically, the incidence of rejection was 25.0% pre-transplant and 18.5% post-transplant. Based on the review of these clinical studies, we can conclude that conducting clinical trials on the safety and efficacy of currently available immunotherapy drugs and identifying novel immunotherapy targets through extensive research may be promising for patients who do not meet the selection criteria for LT and who experience post-transplant recurrence. To date, the clinical experience on the use of immunotherapy before or after LT comes from individual case studies. Although some of the reported results are promising, they are not sufficient to support the standardized use of immunotherapy in clinical practice.

19.
Sci Total Environ ; 880: 163335, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37030360

RESUMO

The issue of greenhouse gas (GHG) emissions resulting from the upgrading and reconstruction of municipal wastewater treatment plants (MWWTPs) along with improved water quality is receiving attention and research. There is an urgent need to explore the impact of upgrading and reconstruction on carbon footprint (CF) in order to address concerns that the upgrading and reconstruction will increase GHG emissions while improving water quality. Here we accounted for the CF of five MWWTPs in Zhejiang Province, China, before and after three different upgrading and reconstruction models - "Improving quality and efficiency" ("Mode I"), "Upgrading and renovation" ("Mode U") and "Improving quality and efficiency plus Upgrading and renovation" ("Mode I plus U"). The upgrading and reconstruction was found to not necessarily result in more GHG emissions. In contrast, the "Mode I" had a more significant advantage in terms of CF reduction (1.82-12.6 % reduction in CF). Overall, the ratio of indirect emissions to direct emissions (indirect emissions/direct emissions) and the amount of GHG emitted per unit of pollutant removed (CFCOD、CFTN、CFTP) decreased, while both the carbon and energy neutral rates increased significantly (up to 33.29 % and 79.36 % respectively) after all three upgrading and reconstruction modes. In addition, the wastewater treatment efficiency and capacity are the main factors that affect the level of carbon emission. The results of this study can provide a calculation model that can be used for other similar MWWTPs during the upgrading and reconstruction processes. More importantly, it can provide a new research perspective as well as valuable information to revisit the impact of upgrading and reconstruction in MWWTPs on GHG emissions.

20.
J Environ Manage ; 338: 117836, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37011530

RESUMO

The slow startup is the major obstacle to the application of anaerobic ammonium oxidation (anammox) process in mainstream wastewater treatment. Extracellular polymeric substances (EPS) are one potential resource for stable anammox reactor operation. Response surface analysis was used to optimize the specific anammox activity (SAA) with the addition of EPS; SAA was maximum at a temperature of 35 °C and the EPS concentration of 4 mg/L. By comparing the nitrogen removal of anammox reactors with no EPS (R0), immobilized EPS (EPS-alginate beads) (R1), and liquid EPS (R2), we found that EPS-alginate beads significantly speed up the startup of anammox process and enable the start time to be shortened from 31 to 19 days. As a result of the higher MLVSS content, higher zeta potential, and lower SVI30, anammox granules of R1 exhibited a stronger capacity to aggregate. Moreover, EPS extracted from R1 had higher flocculation efficiencies than EPS derived from R0 and R2. Phylogenetic analysis of 16S rRNA genes revealed that the main anammox species in R1 is Kuenenia taxon. To clarify the relative significance of stochastic vs deterministic processes in the anammox community, neutral model and network analysis are employed. In R1, community assembly became more deterministic and stable than in other cultures. Our results show that EPS might inhibit heterotrophic denitrification and thereby promote anammox activity. This study suggested a quick start-up strategy for the anammox process based on resource recovery, which is helpful for environmentally sustainable and energy-efficient wastewater treatment.


Assuntos
Reatores Biológicos , Matriz Extracelular de Substâncias Poliméricas , Reatores Biológicos/microbiologia , Filogenia , Oxidação Anaeróbia da Amônia , RNA Ribossômico 16S , Esgotos , Oxirredução , Nitrogênio/farmacologia , Desnitrificação , Anaerobiose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...